Transcutaneous and End-Tidal Capnometry

In the October 2006 issue of Respiratory Care, Stein et al reported on transcutaneous and end-tidal capnometry in spontaneously breathing patients. The aim of their research was to evaluate the bias and precision of transcutaneous carbon dioxide measurement and exhaled gas carbon dioxide measurement (end-tidal CO\(_2\) (PET\(_{CO2}\))) against a blood measurement of carbon dioxide (P\(_{aCO2}\)).

It is well known that these 3 sampling techniques will not have 100% agreement. The data from Stein et al indicates that PET\(_{CO2}\) underestimates P\(_{aCO2}\). During normal conditions, the difference between P\(_{aCO2}\) and PET\(_{CO2}\) is 2–5 mm Hg. This difference can increase with lung disease. It can also supply insight about ventilation-perfusion imbalance. Alternatively, a technical error, such as a leak in the collection system or incorrect filter lines, can lead to a shift in the P\(_{aCO2}\) versus PET\(_{CO2}\) difference.

The large P\(_{aCO2}\) versus PET\(_{CO2}\) difference (mean difference 14.1 ± 7.4 mm Hg) in the report by Stein et al is beyond convention. Stein et al suggest that the underestimation was attributable to dilution from other medical gas. However, there is no baseline or control data to confirm that their data sampling was correct. Therefore it is unclear, from the data presented, whether the recordings were collected from properly obtained measurements.

When seeking minimal verification of the data-collection technique, their reference to manufacturers’ guidelines was not completely cited regarding revision or year. It is not possible to verify from the citations if Stein et al did follow the manufacturers’ guidelines with any of the devices in the study. There were no baseline measurements to ensure proper apparatus setup and use of the devices.

There is further confusion in the report, in that, “When using the oral/nasal cannula, sampling errors corresponding to mouth-breathing seem to be more pronounced. We regard this aspect as the essential factor in the P\(_{aCO2}\) underestimations of the end-tidal method in the present study.” Yet the report also reads, “There was no significant difference between sampling exhaled gas via face mask versus oral/nasal cannula.” Those conflicting statements are confusing.

Changes in PET\(_{CO2}\) can be associated with lung pathology as well as ventilatory depression associated with anesthetic or sedative agents. As pointed out by Stein et al, CO\(_2\) monitoring has been recommended by national societies of anesthesia and is considered a standard of care in the operating room. Stein et al gave no explanation for the difference between their results and the published clinical practice guidelines.

Stein et al were also silent on the matter of timing transcutaneous CO\(_2\) and PET\(_{CO2}\) measurements at 1-min intervals prior to blood draw for P\(_{aCO2}\) measurement. There is no reference or validation that this is the appropriate method for data collection, nor is there any indication of sample size or statistical method validation.

From the report by Stein et al we cannot conclude that PET\(_{CO2}\) does not provide a good assessment of P\(_{aCO2}\). What is clear is that the P\(_{aCO2}\) versus PET\(_{CO2}\) differences in the data presented by Stein et al are outside the normal range.

The authors respond:

The procedure for measuring the partial pressure of end-tidal CO\(_2\) (PET\(_{CO2}\)) during spontaneous breathing is affected by the fact that the exhalatory gas flow occurs openly through the openings of the nose and mouth. The positioning of the gas sampling system, with its openings in the 2 nostrils and above the mouth, and the collection of the gas portion for analysis from a diffuse flow of gas, are limitations of the procedure. This was a point addressed by the manufacturer Oridon, through their further development of a sampling system with an enlarged mouthpiece. The version with the smaller mouthpiece was the Smart CapnoLine O\(_2\) with O\(_2/CO2\) oral/nasal cannula. The version with the larger orifice is the Smart CapnoLine Plus O\(_2\).

In addition, a gas flow in the opposite direction is also generated through the supply of oxygen. According to the manufacturer’s manual and the instructions for the smaller version of the gas sampling system, no effect on CO\(_2\)-measurement should occur up to a gas flow of 4 L/min. However, studies on test subjects by our own research group seem to confirm the presence of an effect on the variance of PET\(_{CO2}\) at 4 L/min. The effect described here leads to a situation where the form of the capnograms is altered so that a predefined point for

REFERENCES

The author reports no other conflict of interest related to the content of this letter.

David Lain PhD RRT
Clinical Marketing
Oridion Capnography
Needham, Massachusetts

Letters

Letters addressing topics of current interest or material in Respiratory Care will be considered for publication. The Editors may accept or decline a letter or edit without changing the author’s views. The content of letters as published may simply reflect the author’s opinion or interpretation of information—not standard practice or the Journal’s recommendation. Authors of criticized material will have the opportunity to reply in print. No anonymous letters can be published. Letters should be submitted electronically via Manuscript Central. Log onto Respiratory Care’s website at http://www.RCJournal.com. Instructions on how to submit a manuscript are on the site and also printed in every issue.
PETCO₂ capnogram is used for calculating the data we presented. This effect could not be deduced from the curves after grouping into 5 clusters. Further, it is clear that the gas sampling is more effective with Oridion’s oral/nasal cannula system than with a face mask. The problematic nature of the conventional analysis of capnometers for the PETCO₂ value is underscored by the form and number of capnograms recorded during spontaneous respiration. Table 1 shows the improved agreement, represented by the curves after grouping into 5 clusters (taken from 3). Furthermore, it is clear that the gas sampling is more effective with Oridion’s oral/nasal cannula system than with a face mask. This effect could not be deduced from the data we presented.

We stress that the analysis of gas samples is much more complex for patients breathing spontaneously than for patients undergoing artificial ventilation. Here one should not so much push the technique to the forefront, but should rather point out that alternative assessment procedures should be offered.

We thank Dr Lain for bringing this subject to the discussion table.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Number of Capnograms in the Cluster</th>
<th>PETCO₂ (mmHg)</th>
<th>PETCO₂ (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19 ± 11</td>
<td>35 ± 6</td>
<td>28 ± 12</td>
</tr>
<tr>
<td>2</td>
<td>17 ± 5</td>
<td>33 ± 7</td>
<td>17 ± 3</td>
</tr>
<tr>
<td>3</td>
<td>19 ± 8</td>
<td>30 ± 10</td>
<td>22 ± 26</td>
</tr>
<tr>
<td>4</td>
<td>21 ± 8</td>
<td>27 ± 11</td>
<td>24 ± 10</td>
</tr>
<tr>
<td>5</td>
<td>13 ± 8</td>
<td>23 ± 12</td>
<td>19 ± 10</td>
</tr>
</tbody>
</table>

*Each row corresponds to a cluster, including the mean ± SD of the 8 patients. A total of 1,586 capnograms were analysed: 801 in the nasal-cannula group, 785 in the face-mask group. Cluster 1 represents the nearest shape to the normal capnogram.

PETCO₂ = partial pressure of end-tidal carbon dioxide (Data from Reference 3.)

*Hartmut Gehring MD on behalf of all the authors Department of Anesthesiology University Clinic of Schleswig-Holstein Luebeck, Germany

The authors report no conflict of interest related to the content of this letter.

REFERENCES

Spirometer Calibration Check Procedures

As a reader of Respiratory Care journal for many years and an advocate of that organ as a quality, peer-reviewed journal, I feel that I have to draw my professional concerns to your attention about the article by Pérez-Padilla et al, “The Long-Term Stability of Portable Spirometers Used in a Multinational Study of the Prevalence of Chronic Obstructive Pulmonary Disease.”

Pérez-Padilla et al conclude that, “In these 70 EasyOne spirometers, neither calibration nor linearity changed during the study. Such calibration stability is a valuable feature in spirometry surveys and in the clinical setting.” While calibration stability may be an admirable feature, there is absolutely no evidence in the Pérez-Padilla et al paper to support the conclusion that linearity did not change during the study. Pérez-Padilla et al performed a daily calibration check on each spirometer, using one of a number of 3-L syringes. This is simply a one-point calibration verification. How can a one-point measurement be considered a linearity check? For all Pérez-Padilla et al know, the response of each device theoretically could well have been alinear, and they would not have detected the alinearity. Those of us who have spent much of our professional lives working to improve quality assurance in pulmonary-function-test equipment know that a one-point verification is of extremely limited value. Further, there are many documented instances of spirometers that passed a calibration verification and then proceeded to give incorrect readings under clinical measurement conditions. That is why good laboratory practice calls for the use of physio-
logical controls, as supported by most professional societies around the world. One has to question, therefore, why Pérez-Padilla et al chose not to include any physiological controls in their study.

It is also noticeable that Pérez-Padilla et al chose only to use the American Thoracic Society’s 1994 calibration protocol, which was verification at a single flow rate, rather than the multi-point method recommended in the 2005 spirometry standard from the American Thoracic Society and European Respiratory Society. Did Pérez-Padilla et al know that the EasyOne spirometer does not meet the requirement of the multi-point method in the 2005 standard? Why did they not mention this in the paper?

Unfortunately, the Pérez-Padilla et al paper shows a particular brand of spirometer in a good light. It is not my intention to comment on whether the device is a good one or a poor one, but instead simply to point out that publishing articles with flawed methods and incorrect conclusions can put a device in either a positive or negative light, which could have an important effect on the sales of that manufacturer. To give a misleading impression reflects badly upon what has up until now, in my opinion, been a revered journal.

Alan J Moore
Respiratory Physiology Service
Department of Thoracic Medicine
City Hospital
Birmingham, United Kingdom

The author has current or has previously had consultancy agreements, or is receiving or has previously received educational sponsorship and/or hospitality, from the following manufacturers or vendors of spirometers or equipment related to pulmonary function testing: Beaver Medical PLC—UK, Clement Clarke International, Custo Med—Germany, Ferraris Cardio-respiratory, Medical International Research (MIR)—Rome, nd Medical Technologies, and Viasys Healthcare.

REFERENCES
4. Walters et al published results similar to ours.

We communicated our experience with 70 EasyOne spirometers during a survey done house-by-house, following a strict quality-control protocol. We have no doubt that other handheld spirometers can have at least a similar performance to the EasyOne spirometers we reported on. Researchers experienced in the long-term use of other devices should publish their results to provide potential users with this valuable information.

Recently we collected 47 of the EasyOne spirometers used in the survey (in Mexico City, Montevideo, Sao Paulo, and Santiago) and tested their flow linearity with a flow-volume calibrator (FVC 3000, Jones Medical Instrument, Oak Brook, Illinois), with 17 flow points, ranging from <1 L/s to 16 L/s. The remaining 10 spirometers were not tested: 3 were out of order and 7 were unavailable. This calibration was after 2–3 years of use.

We have no doubt that other handheld spirometers used in Caracas was adequate when tested with a 3-L syringe and 3 different flows, as required by current standards.

Finally, as we stated in the paper, none of the authors has a commercial relationship with the manufacturer of the EasyOne spirometer, so none of us will benefit if EasyOne sales increase.

Rogelio Pérez-Padilla MD
on behalf of the PLATINO Study Group
Instituto Nacional de Enfermedades Respiratorias
Distrito Federal
Mexico City, Mexico
The authors report no conflict of interest related to the content of this letter.

REFERENCES

